Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(15): 7419-7426, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38529816

RESUMO

The synthesis of atomically precise gold nanoclusters with high photoluminescence quantum yield (PLQY) in the near-infrared (NIR) region and understanding their photoluminescence mechanism are crucial for both fundamental science and practical applications. Herein, we report a highly luminescent, molecularly pure Au39(PET)29 (PET = 2-phenylethanethiolate) nanocluster with PLQY of 19% in the NIR range (915 nm). Steady state and time-resolved PL analyses, as well as temperature-dependent PL measurements reveal the emission nature of Au39(PET)29, which consists of prompt fluorescence (weak), thermally activated delayed fluorescence (TADF), and phosphorescence (predominant). Furthermore, strong dipole-dipole interaction in the solid-state (e.g., Au39(PET)29 nanoclusters embedded in a polystyrene thin-film) is found to narrow the energy gap between the S1 and T1 states, which results in faster intersystem crossing and reverse intersystem crossing; thus, the ratio of TADF to phosphorescence varies and the total PLQY is increased to 32%. This highly luminescent nanocluster holds promise in imaging, sensing and optoelectronic applications.

2.
Proc Natl Acad Sci U S A ; 121(10): e2318537121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412123

RESUMO

Atomically precise control over anisotropic nanoclusters constitutes a grand challenge in nanoscience. In this work, we report our success in achieving a periodic series of atomically precise gold quantum rods (abbrev. Au QRs) with unusual excitonic properties. These QRs possess hexagonal close-packed kernels with a constant three-atom diameter but increasing aspect ratios (ARs) from 6.3 to 18.7, all being protected by the same thiolate (SR) ligand. The kernels of the QRs are in a Au1-(Au3)n-Au1 configuration (where n is the number of Au3 layers) and follow a periodic elongation with a uniform Au18(SR)12 increment consisting of four Au3 layers. These Au QRs possess distinct HOMO-LUMO gaps (Eg = 0.6 to 1.3 eV) and exhibit strongly polarized excitonic transition along the longitudinal direction, resulting in very intense absorption in the near-infrared (800 to 1,700 nm). While excitons in gapped systems and plasmons in gapless systems are distinctly different types of excitations, the strongly polarized excitons in Au QRs surprisingly exhibit plasmon-like behaviors manifested in the shape-induced polarization, very intense absorption (~106 M-1 cm-1), and linear scaling relations with the AR, all of which resemble the behaviors of conventional metallic-state Au nanorods (i.e., gapless systems), but the QRs possess distinct gaps and very long excited-state lifetimes (10 to 2,122 ns), which hold promise in applications such as near-infrared solar energy utilization, hot carrier generation and transfer. The observation of plasmon-like behaviors from single-electron transitions in Au QRs elegantly bridges the distinct realms of single-electron and collective-electron excitations and may stimulate more research on excitonics and plasmonics.

3.
Adv Mater ; 36(8): e2309073, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37922431

RESUMO

Atomically precise gold nanoclusters (NCs) have emerged as a new class of precision materials and attracted wide interest in recent years. One of the unique properties of such nanoclusters pertains to their photoluminescence (PL), for it can widely span visible to near-infrared-I and -II wavelengths (NIR-I/II), and even beyond 1700 nm by manipulating the size, structure, and composition. The current research efforts focus on the structure-PL correlation and the development of strategies for raising the PL quantum yields, which is nontrivial when moving from the visible to the near-infrared wavelengths, especially in the NIR-II regions. This review summarizes the recent progress in the field, including i) the types of PL observed in gold NCs such as fluorescence, phosphorescence, and thermally activated delayed fluorescence, as well as dual emission; ii) some effective strategies that are devised to improve the PL quantum yield (QY) of gold NCs, such as heterometal doping, surface rigidification, and core phonon engineering, with double-digit QYs for the NIR PL on the horizons; and iii) the applications of luminescent gold NCs in bioimaging, photosensitization, and optoelectronics. Finally, the remaining challenges and opportunities for future research are highlighted.

4.
J Am Chem Soc ; 145(36): 19969-19981, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37642696

RESUMO

More than a decade of research on the photoluminescence (PL) of classic Au25(SR)18 and its doped nanoclusters (NCs) still leaves many fundamental questions unanswered due to the complex electron dynamics. Here, we revisit the homogold Au25 (ligands omitted hereafter) and doped NCs, as well as the Ag25 and doped ones, for a comparative study to disentangle the influencing factors and elucidate the PL mechanism. We find that the strong electron-vibration coupling in Au25 leads to weak PL in the near-infrared region (∼1000 nm, quantum yield QY = 1% in solution at room temperature). Heteroatom doping of Au25 with a single Cd or Hg atom strengthens the coupling of the exciton with staple vibrations but reduces the coupling with the core breathing and quadrupolar modes. The QYs of the three MAu24 NCs (M = Hg, Au, and Cd) follow a linear relation with their PL lifetimes, suggesting a mechanism of suppressed nonradiative decay in PL enhancement. In contrast, the weaker electron-vibration coupling in Ag25 leads to higher PL (QY = 3.5%), and single Au atom doping further leads to a 5× enhancement of the radiative rate and a suppression of nonradiative decay rate (i.e., twice the PL lifetime of Ag25) in AuAg24 (hence, QY 35%), but doping more Au atoms results in gold distribution to staple motifs and thus triggering of strong electron-vibration coupling as in the MAu24 NCs, hence, counteracting the radiative enhancement effect and giving rise to only 5% QY for AuxAg25-x (x = 3-10). The obtained insights will provide guidance for the design of metal NCs with high PL for lighting, sensing, and optoelectronic applications.

5.
Angew Chem Int Ed Engl ; 62(25): e202303102, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37071477

RESUMO

Preserving large permanent pore structures in a fluid may endow conventional liquids with emergent physical properties. However, such materials are challenging to make because of the tendency of the pores to be filled and occupied by the solvent molecules. Here, we report the design and synthesis of the first Type III porous liquid (PL) containing uniform yet stable 480 nm cavities. This was achieved by first constructing a single crystalline hollow metal-organic framework (MOF), UiO-66-NH2 , through chemical etching. The thin yet defect-free MOF shell effectively excludes the bulky poly(dimethylsiloxane) solvent molecules from entering the cavity through its 4 Šaperture, resulting in the preservation of both micro- and macroporosity in the PL. These enormous void spaces allow the PL to reversibly host and release up to 27 wt % water for up to 10 cycles. The switching between the "dry" state and the "wet" state led to a large changes of the thermal conductivity of the PL from 0.140 to 0.256 W m-1 K-1 , affording a guest-responsive liquid thermal switch with a switching ratio of 1.8.


Assuntos
Água , Porosidade , Solventes
6.
Commun Chem ; 6(1): 22, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732442

RESUMO

Photoluminescence of ultrasmall, atomically precise gold nanoclusters constitutes an area of significant interest in recent years for both fundamental research and biological applications. However, the exploration of near-infrared photoluminescence of gold nanoclusters is still in its infancy due to the limitations of synthetic methods and characterization techniques. Herein, the photoluminescence properties of an Au38(PET)26 (PET = 2-phenylethanethiolate) nanocluster are investigated in detail. The Au38(PET)26 exhibits an emission peak at 865 nm, which is revealed to be a mix of fluorescence, thermally activated delayed fluorescence, and phosphorescence via the combined analyses of time-resolved and temperature-dependent photoluminescence measurements. The quantum yield of Au38(PET)26 is determined to be 1.8% at room temperature under ambient conditions, which increases to above 90% by suppressing the non-radiative relaxation pathway at a cryogenic temperature (80 K). Overall, the results of this work discover the coexistence of three radiative processes in thiolate-protected Au nanoclusters and will pave the way for understanding the intriguing photoluminescence properties of gold nanoclusters in future studies.

7.
J Am Chem Soc ; 144(42): 19243-19247, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36239690

RESUMO

This work presents the synthesis and intriguing photoluminescence of the Au42(PET)32 (PET = 2-phenylethanethiolate) nanocluster (NC). The Au42(PET)32 NC exhibits dual emission at 875 and 1040 nm, which are revealed to be fluorescence and phosphorescence, respectively. The emission quantum yield (QY) of Au42(PET)32 in dichloromethane is 11.9% at room temperature in air, which is quite rare for thiolate-protected Au NCs. When Au42(PET)32 NCs are embedded in polystyrene films (solid state), the fluorescence was dramatically suppressed while the phosphorescence was significantly enhanced. This divergent behavior is explained by dipolar interaction-induced enhancement of intersystem crossing from singlet to triplet excited state.


Assuntos
Cloreto de Metileno , Poliestirenos , Temperatura , Espectrometria de Fluorescência
8.
J Am Chem Soc ; 144(10): 4393-4402, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35230831

RESUMO

Due to the extraordinarily high surface to volume ratio and enormous structural and chemical diversities, metal-organic frameworks (MOFs) have drawn much attention in applications such as heterogeneous catalysis, gas storage separation, and drug delivery, and so on. However, the potential of MOF materials as mechanical metamaterials has not been investigated. In this work, we demonstrated that through the concerted effort of molecular construct and mesoscopic structural design, hierarchical MOFs can exhibit superb mechanical properties. With the cutting-edge in situ transmission and scanning electron microscope (TEM and SEM) techniques, the mechanical properties of hollow UiO-66 octahedron particles were quantitatively studied by compression on individual specimens. Results showed that the yield strength and Young's modulus of the hierarchical porous framework material presented a distinct "smaller is stronger and stiffer" size dependency, and the maximum yield strength and Young's modulus reached 580 ± 55 MPa and 4.3 ± 0.5 GPa, respectively. The specific strengths were measured as 0.15 ± 0.03 to 0.68 ± 0.11 GPa g-1 cm3, which is comparable to the previously reported state-of-the-art mechanical metamaterials like glassy carbon nanolattices and pyrolytic carbon nanolattices. This work revealed that MOF materials can be made into a new class of low-density, high-strength mechanical metamaterials and provided insight into the mechanical stability of nanoscale MOFs for practical applications.

9.
iScience ; 24(10): 103206, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34704000

RESUMO

Significant progress has been made in both fields of atomically precise metal nanoclusters (NCs) and metal-organic frameworks (MOFs) in recent years. A promising direction is to integrate these two classes of materials for creating unique composites with improved properties for catalysis and other applications. NCs incorporated with MOFs exhibit an optimized catalytic performance in many catalytic reactions, in which MOFs play a vital supporting role or as cocatalysts. In this Perspective, we first provide a brief summary of the methods that have been developed for the preparation of NCs/MOF composites and the characteristics of these strategies are analyzed. Following that, some recent works are highlighted to demonstrate the crucial role of MOF matrices in the enhancement of NCs catalytic properties. Finally, we outline some potentially important aspects for future work. This Perspective is in hopes of stimulating more interest in the research on the integration of NCs with MOFs toward functional materials.

10.
Chem Commun (Camb) ; 57(27): 3415-3418, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33687393

RESUMO

We report the first examples of yolk-shell metal-organic framework (MOF) heterostructures based on topologically distinct MOFs: ZIF-8/ZIF-67 and UiO-66. This was accomplished through an innovative reverse synthesis strategy: A hollow UiO-66 was first constructed; the precusors of the ZIFs were then loaded into the cavity of hollow UiO-66 through a mixed solvent impregnation method; subsequent crystallization under solvothermal condition led to the formation of yolk-shell MOFs containing one or multiple ZIF particles confined within a chemically robust single crystalline UiO-66 shell.

11.
ACS Cent Sci ; 6(2): 247-253, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32123743

RESUMO

We report here a new technique for the identification and visualization of functional domains in stratified metal-organic frameworks (MOFs). The technique, namely, gold diffusion enabled domain identification, utilizes the diffusion of Au nanoparticles within MOF cavities to track and selectively stain the more Au-philic domain in an MOF particle thereby allowing direct observation of domains, determination of domain sequences, and, in certain cases, domain boundaries under transmission electron microscopy. This method is an excellent tool for studying MOF materials with complex domain hierarchy.

12.
Nano Lett ; 20(3): 1774-1780, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-31995389

RESUMO

We studied coordination-dependent surfactant binding on shaped MOF nanocrystals. Cetyltrimethylammonium bromide (CTAB) on the surface of ZIF-8 was used as a model system. Infrared spectroscopic analysis and molecular dynamics simulations reveal different coordination environments for Zn nodes on {100} and {110} facets, resulting in different CTAB adsorption. We found that we are able to fine-tune the ratio of {100} and {110} facets in the nanocrystals. We also observed that once the MOF nanocrystals are enclosed by pure {110} facets growth along the {100} facets is terminated because the MOF nanocrystal has no surface area for CTAB adsorption. Growth can then be reinitiated through the etching of these rhombic dodecahedral nanocrystals to form a small amount of undercoordinated sites. This work represents the first systematic study of the design principles underpinning the synthesis of shaped MOF nanocrystals.

13.
J Am Chem Soc ; 141(51): 20365-20370, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31782985

RESUMO

An oxidative linker cleaving (OLC) process was developed for surgical manipulation of the engraving process within single crystalline MOFs particles. The strategy relies on selective degradation of 2,5-dihydroxyterephthalic acid linker into small molecular fragments by oxidative ring-opening reactions, resulting in controllable scissoring of framework. By regulation of the generation and diffusion of oxidative species, the core MOFs will undergo divergent etching routes, producing a series of single crystalline hollow and yolk-shell MOF structures. In addition, the OLC process can be initiated and localized around the pre-embedded Pd NPs through on-site catalytic generation of oxidative species, leading to solitary confinement of multiple NPs within one single crystalline MOF particle, namely, a multi-yolk-shell structure. This unique architecture can effectively protect NPs from agglomeration while realizing size selective catalysis at the same time.

14.
J Am Chem Soc ; 140(26): 8082-8085, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29909631

RESUMO

The aperture-opening process resulting from dissociative linker exchange in zirconium-based metal-organic framework (MOF) UiO-66 was used to encapsulate the ruthenium complex (tBuPNP)Ru(CO)HCl in the framework (tBuPNP = 2,6-bis((di- tert-butyl-phosphino)methyl)pyridine). The resulting encapsulated complex, [Ru]@UiO-66, was a very active catalyst for the hydrogenation of CO2 to formate. Unlike the analogous homogeneous catalyst, [Ru]@UiO-66 could be recycled five times, showed no evidence for bimolecular catalyst decomposition, and was less prone to catalyst poisoning. These results demonstrated for the first time how the aperture-opening process in MOFs can be used to synthesize host-guest materials useful for chemical catalysis.

15.
Angew Chem Int Ed Engl ; 57(8): 2110-2114, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29266678

RESUMO

A bio-inspired design of using metal-organic framework (MOF) microcrystals with well-defined multi-shelled hollow structures was used as a matrix to host multiple guests including molecules and nanoparticles at separated locations to form a hierarchical material, mimicking biological structures. The interactions such as energy transfer (ET) between different guests are regulated by precisely fixing them in the MOF shells or encapsulating them in the cavities between the MOF shells. The proof-of-concept design is demonstrated by hosting chromophore molecules including rhodamine 6G (R6G) and 7-amino-4-(trifluoromethyl)coumarin (C-151), as well as metal nanoparticles (Pd NPs) into the multi-shelled hollow zeolitic imidazolate framework-8 (ZIF-8). We could selectively establish or diminish the guest-to-framework and guest-to-guest ET. This work provides a platform to construct complex multifunctional materials, especially those need precise separation control of multi-components.

16.
Environ Sci Pollut Res Int ; 24(33): 26069-26078, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28942535

RESUMO

The present work described that tertiary ammonium surfactants containing bromide ion as novel metal-free catalysts were innovatively coupled with peroxymonosulfate (PMS) to build a simple catalytic oxidation system, possessing outstanding catalytic ability with organic dye Reactive Red M-3BE (RR M-3BE) as the target pollutant. Furthermore, cetyltrimethylammonium bromide (CTAB), a representative of cationic surfactant, was selected to further investigate the catalytic oxidation performance. It is found that at the critical micelle concentration (CMC) of CTAB, the oxidation efficiency of the CTAB/PMS system was optimal due to the strong electrostatic attraction between the CTA+ micelle and reactive anions (Br- and HSO5-), concentrating HSO5- and Br- at the micellar surface, which accelerated the catalytic oxidation reaction between Br- and HSO5-, generating a mass of highly active reactive species. A hybrid method that combined radical scavenger (methanol) with electron paramagnetic resonance (EPR) technology was adopted for the investigation of reactive species, and the results indicated that hydroxyl radical (•OH) was generated and had a major role in the process. The findings from this work provide a practicable pathway for highly efficient PMS activation in wastewater treatment, and also initiate a promising research area of surfactants in the field of environmental catalysis.


Assuntos
Peróxidos/química , Tensoativos/química , Eliminação de Resíduos Líquidos/métodos , Brometos/química , Catálise , Cetrimônio , Compostos de Cetrimônio/química , Radical Hidroxila/química , Oxirredução , Sulfatos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...